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Abstract

6-DoF object pose estimation from a monocular image
is challenging, and a post-refinement procedure is gener-
ally needed for high-precision estimation. In this paper, we
propose a framework based on a recurrent neural network
(RNN) for object pose refinement, which is robust to erro-
neous initial poses and occlusions. During the recurrent
iterations, object pose refinement is formulated as a non-
linear least squares problem based on the estimated cor-
respondence field (between a rendered image and the ob-
served image). The problem is then solved by a differen-
tiable Levenberg-Marquardt (LM) algorithm enabling end-
to-end training. The correspondence field estimation and
pose refinement are conducted alternatively in each itera-
tion to recover the object poses. Furthermore, to improve
the robustness to occlusion, we introduce a consistency-
check mechanism based on the learned descriptors of the
3D model and observed 2D images, which downweights the
unreliable correspondences during pose optimization. Ex-
tensive experiments on LINEMOD, Occlusion-LINEMOD,
and YCB-Video datasets validate the effectiveness of our
method and demonstrate state-of-the-art performance.

1. Introduction
6-DoF object pose estimation is of crucial importance in

various applications, including augmented reality, robotic
manipulation, and autonomous driving. Influenced by vary-
ing illuminations and occlusions, appearances of the differ-
ently posed objects may vary significantly from different
views, which poses great challenges for 6-DOF object pose
estimation from a single color image.

The recent top-performing methods [23,27,41,53,59] ad-
ditionally include a pose refinement procedure which sub-
stantially improves the performance. Some of these frame-
works [41, 53] rely on depth sensors and refine the poses
with the ICP algorithm [2]. To avoid the expensive depth
sensor, Li et al. [23] and Manhardt et al. [27] pioneered
the RGB-based pose refinement. During refinement, these
methods first render a reference color image according to
the coarse pose estimate. This rendered image along with

K. Lin and H. Li are the co-corresponding authors.

C
o

rr
e

s
p

o
n

d
e

n
c
e

 F
ie

ld
 

R
e
c

ti
fi

c
a

ti
o

n

2

2

𝐚𝐫𝐠 𝐦𝐢𝐧
𝛿𝐏

Estimated 

Correspondence 

Field 𝐂𝑡

Pose-derived 

Correspondence Field 

𝐂(⋅; 𝛿𝐏)

Similarity 

Score Map

(a) Observed 

Image & Rendered 

Object

(c) Pose Result 

(shown as a 

green mask)

Object

(b) Recurrent Pose Refinement

R
e

-r
e
n

d
e

ri
n
g

Reference Image (Rendered ) Target Image (Observed)

Correspondence Field Estimation 

Optimized Pose 𝜹𝐏𝒕

LM Optim.

Recurrent 

Iterations

Figure 1. The basic idea. (a) Before refinement, a reference image
is rendered according to the object initial pose (shown in a fused
view). (b) Our RNN-based framework recurrently refines the ob-
ject pose based on the estimated correspondence field between the
reference and target images. The pose is optimized to be consis-
tent with the reliable correspondence estimations highlighted by
the similarity score map (built from learned 3D-2D descriptors)
via differentiable LM optimization. (c) The output refined pose.

the observed image is then fed to a CNN to directly predict
the residual pose for refining the coarse pose [23, 27, 59].
While these methods perform well in ideal scenarios based
on massive training data, the pose regression becomes less
stable in practice. More recently, Iwase et al. [20] formu-
lated the object pose refinement as an optimization problem
based on feature alignment, and reported significant perfor-
mance improvements. In their work, the encoded features
of a 3D model by a neural network are projected to the
2D image plane according to the pose parameters. There-
after, the pose optimization is conducted by aligning the
projected features with the observed target image features.
As the pose optimization depends on the gradients from the
pixel-level feature differences, the feature alignment based
methods are only applicable to small inter-frame pose vari-
ations [58] and are not quite robust with erroneous initial
poses. Moreover, Iwase et al. [20] still have a limited de-
sign for occlusion handling, which might limit the deploy-
ment scope.

In this work, we propose a recurrent object pose refine-
ment framework, dubbed RNNPose, which is robust to er-
roneous initial poses and occlusions. The overall pipeline



is illustrated in Fig. 1. Before refinement, a reference im-
age of the object is rendered according to the initial pose
estimation. Our refinement module refines the initial pose
based on this rendered image and the observed image. To
increase the tolerance to erroneous initial poses, our refine-
ment is conducted within a recurrent framework, where the
pose optimization is formulated as a non-linear least squares
problem based on estimated correspondence fields. In each
recurrent iteration, the dense correspondences between the
rendered image and observed image are estimated, and the
object pose is then optimized to be consistent with the cor-
respondence field estimation. The architecture of our corre-
spondence estimation is inspired by the recent optical flow
estimation techniques [39, 44], which is integrated with our
pose optimization recurrently. To suit our task where un-
patterned objects and illumination variations are ubiquitous,
we further include a correspondence field rectification step
in each recurrent iteration based on the currently optimized
pose. The inconsistent correspondences are rectified by en-
forcing rigid-transformation constraints. The rectified cor-
respondence field is also used to initialize the next recurrent
iteration to improve the robustness further.

For occlusion handling, we introduce a 3D-2D hybrid
network trained with a contrastive loss, which generates dis-
tinctive point-wise descriptors for the 3D object model and
observed 2D images. A similarity score is constructed for
each estimated correspondence pair based on the learned
descriptors, with which to downweight the unreliable corre-
spondences during pose optimization. The pose optimiza-
tion is conducted by a differentiable Levenberg-Marquardt
(LM) algorithm (sharing the ideas of [42, 43]) for end-to-
end training.

Our contributions are three-fold: 1) We propose an
RNN-based 6-DoF pose refinement framework that is ro-
bust to large initial pose errors and occlusions. During re-
current iterations, the pose optimization is formulated as
a non-linear least squares problem based on the estimated
correspondence field. Meanwhile, the correspondence field
is also being rectified and improved by the optimized pose
for robustness. 2) To handle the occlusions, a 3D-2D hy-
brid network is introduced to learn point-wise descriptors
which are used to downweight unreliable correspondence
estimations during pose optimization. 3) We achieve new
state-of-the-art performances on LINEMOD, Occlusion
LINEMOD, and YCB-Video datasets. Our code is public
at https://github.com/DecaYale/RNNPose.

2. Related Work
6-DoF object pose estimation. 6-DoF object pose

estimation systems (usually going after an object detec-
tor [5, 11, 28, 47, 55–57, 60]) aim to estimate the 3-DoF
orientations and 3-DoF locations of rigid objects. The
boom of deep learning has significantly improved object
pose estimation in recent years. Some methods proposed
to directly regress object poses from monocular color im-
ages [7, 16, 21, 24, 51, 52] or with the aid from depth sen-

sors [13, 49, 50]. They leveraged CNNs’ regression ability
to directly map the observed images to object poses. More
recently, correspondence-based methods [6, 15, 33–35, 45]
become more popular. They employed CNNs to estimate
the corresponding 3D model point for each observed ob-
ject pixel, and then solve for poses with PnP [10]. These
methods may estimate the object’s bounding box corners
[35,45], predict dense 2D-3D correspondence maps [33] or
vote the keypoints by all object pixels [34]. More recently,
EPOS [15] proposed to handle symmetric objects by seg-
menting 3D models into patches and estimating the patch
centers. The above direct object pose estimation methods
usually become less stable when varying illuminations and
occlusions exist. Several methods [20, 23, 27, 41, 53, 59]
hence conducted pose refinement based on the estimated
coarse initial pose above, which achieved significant per-
formance gains. Some of these methods [41, 53] relied on
depth data from costly sensors and utilized ICP to align the
known object model to the observed depth image. While
[23, 27, 59] first rendered a 2D object image according to
the initial pose and then compared the rendered image with
the observed image via a CNN to estimate the residual pose.
These RGB-based methods are especially attractive due to
their economical nature. However, most of these methods
need massive training data and are not quite robust in prac-
tical scenarios. Moreover, they need a cumbersome CNN
for pose regression, which sacrifices efficiency. Iwase et
al. [20] proposed to alleviate such dilemma by reusing the
images features extracted by CNN and attained real-time
processing. Concretely, they employed the CNN as an im-
age feature encoder, based on which to formulate a non-
linear optimization problem to align the features from the
inference and target images for pose refinement inspired by
BA-Net [42]. Though efficient, their formulation is built
upon overlapped object regions across the reference image
and target image, which may thus be less stable with erro-
neous initial pose inputs. The previous work [1] proposed
to refine the pose based on the correspondences, but their
method is still limited to ideal scenarios.

Non-linear least squares optimization with deep
learning. Non-linear least squares optimization algorithms,
such as Gauss-Newton [30] and Levenberg-Marquardt [31],
are widely used in computer vision [17, 25, 32, 54], given
their efficient and effective nature. Recently, the differen-
tiability of the optimization algorithm itself has been widely
studied and several works [37, 42, 43, 48] have included the
differentiable optimization algorithm during the network
training for localization systems and visual SLAMs. These
inspire our formulation for object pose refinement.

3. Method
Given an observed object image Iobs, an initial object

pose estimate Pinit and the object’s CAD modelM as in-
puts, a 6-DoF pose refinement system aims to further im-
prove the object pose estimation. In this paper, we propose
a recurrent pose refinement method, dubbed RNNPose,
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Figure 2. Overview of the proposed method. For pose refinement, a reference image Iref is rendered with the object CAD model and its
initial pose Pinit. The image feature encoding module encodes the rendered image Iref and the observed image Iobs to feature maps and
build a 4D global correlation volume. In parallel, the 3D context feature encoding module encodes the 3D model geometry and render the
3D features to a 2D context feature map Fctx according to the initial pose estimation. During pose refinement, the correspondence field
Ĉt and the residual pose δP̂t are alternately estimated in a recurrent framework. After the LM pose optimization, correspondence field
estimation Ĉt is rectified as Ĉ′

t by enforcing rigid-transformation constraints with the currently optimized pose δP̂t to further improve
next-iteration estimations. After N recurrent iterations, the reference image Iref is re-rendered with the current pose estimation.

which is robust to erroneous initial poses and occlusions.
Our method is based on a rendering pipeline and may have
several rendering cycles as illustrated by Fig. 2. At the be-
ginning of the first rendering cycle, a reference image Iref
is rendered with the object’s CAD model according to its
initial pose Pinit (estimated by any direct methods [34,53]).
Then, the rendered reference image, the observed target im-
age, and the vertices of the CAD model are encoded as
high-dimensional features which will be used to estimate
the correspondences (between the rendered image and ob-
served image) in the follow-up pose refinement module.
The pose refinement module constitutes our major contri-
bution, where we formulate an optimization problem based
on the correspondence estimations. We integrate correspon-
dence field estimation and pose refinement into a recurrent
framework for robustness and efficiency. To handle occlu-
sions, we generate point-wise distinctive descriptors for the
3D object model and observed images with a 3D-2D hybrid
network, with which to downweight the unreliable corre-
spondences during pose optimization. After every several
recurrent iterations, the reference image Iref is re-rendered
with the currently optimized pose to decrease the pose gap
to the target for the next cycle.

In the ensuing subsections, we will detail the feature ex-
traction (Sec. 3.1), recurrent pose refinement (Sec. 3.2), and
the loss functions for training (Sec. 3.3).

3.1. 2D-3D Feature Encoding and Rendering
The rendered reference image Iref and observed target

image Iobs first need to be encoded into high-dimensional
feature maps Fref and Fobs for the follow-up feature corre-

lation volume construction [9,18,19,39,44]. The correlation
volume encodes the appearance similarities between image
pixels, which is essential for correspondence reasoning. In
our work, we adopt several residual blocks [12] for image
feature encoding, and the pair-wise correlations of the en-
coded features are calculated to create a global correlation
volume. The global correlation volume will be frequently
queried for correspondence field estimation in the follow-
up pose refinement module.

Besides the pair-wise correlation volume, popular dense
correspondence estimation methods also incorporate con-
text features of the reference image for guidance. As shown
in Fig. 2, to better encode the geometric contexts, unlike
previous methods encoding the context features from 2D
images, we directly encode the features from 3D object
point clouds with a 3D context feature encoder based on
KPConv [46]. The point-wise geometric features are then
rendered as a 2D context feature map Fctx according to the
initial object pose estimation. Here, we adopt a differen-
tiable renderer [36] for feature rendering to enable geomet-
ric feature learning. We empirically found that encoding the
context features from point clouds brings more robustness.
Besides, the vertex features only need to be extracted once
per object model and archived for inference after training,
which is quite efficient.

3.2. Recurrent Correspondence Field Estimation
and 6-DoF Pose Refinement

Based on the constructed correlation volume and en-
coded context features, we propose a 6-DoF object pose re-
finement system by integrating the correspondence estima-



tion and pose optimization as a recurrent framework. The
correspondence field estimation and pose optimization rely
on each other and improve recurrently for robust pose re-
finement. The basic pipeline is illustrated in the pose re-
finement module in Fig. 2.

3.2.1 Correspondence Field Estimation

For correspondence field estimation, we adopt a network
architecture similar to RAFT [44] but make major modifi-
cations to suit our task, i.e., including the 3D context fea-
ture encoding (Sec. 3.1) and correspondence rectification
(Sec. 3.2.2). At the beginning of each recurrent iteration,
for each pixel of the reference image, we first look up and
collect (from the global correlation volume) its correlation
values with the candidate pixels in the target image. The
candidate pixels are within a square local window centered
at the estimated correspondences from the previous itera-
tion. The collected correlations are then reshaped as a lo-
cal correlation volume (a 2D map) spatially aligned with
the reference image. In the first iteration, we use an all-
zeros correspondence field to bootstrap correlation candi-
date identification, while in the later iterations, the rectified
correspondence field (to be elaborated in Sec. 3.2.2) is used.

After the correlation lookup, the collected local correla-
tion volume, the rectified correspondence field, and the pre-
viously encoded context feature map Fctx are concatenated
as inputs to a GRU network to estimate the correspondence
field Ĉt for the current (t-th) recurrent iteration.

3.2.2 6-DoF Pose Refinement

Basic Formulation. Given a reference image (with depth
map) and a target image, the ground-truth correspondence
field of the reference image can be derived based on the
ground-truth residual pose δPgt point-wisely:

C(xi; δPgt) = π(δPgtπ−1(xi, zi)), (1)

where C(xi; δPgt) ∈ R2 denotes the ground-truth corre-
spondence field value of point xi, and zi denotes the as-
sociated rendered depth value. Here, π(·) and π−1(·; zi)
are the projection (3D-to-2D) and inverse projection (2D-
to-3D) functions of a pinhole camera model.

To estimate the residual pose, we take the correspon-
dence field Ĉt estimated by the GRU as an approximation
of its ground-truth, i.e., Ĉt(x

i) ≈ C(xi; δPgt), and push
the correspondence field derived by the pose argument δP,
i.e., C(xi; δP), close to the GRU’s estimation by optimiz-
ing δP. In this way, the residual pose parameter δP will
approximate the ground-truth δPgt after the optimization.
The specific formulation is a non-linear least squares prob-
lem and the objective function is expressed as

E(ξ) =

M∑
i=1

(Ĉt(x
i)−C(xi; ξ))T (Ĉt(x

i)−C(xi; ξ)),

(2)

w/ rectification

w/o rectification

Reference image (rendered) Target image (observed)
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before/after 
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Figure 3. With the rectified correspondences, the related local cor-
relation windows are accordingly shifted to better locations, which
improves the estimation in the next recurrent iteration.

where the residual pose argument δP is parameterized as
its minimal representation ξ ∈ se(3) (of the associated
Lie-algebra) during optimization. Ĉt is the GRU-estimated
correspondence field at the t-th recurrent iteration, and
C(xi; ξ) denotes the correspondence of point xi derived
with the pose parameter argument ξ, and M is the total
number of object points in the rendered reference image.

Handling Unreliable Correspondences with Similarity
Scores. The formulation of Eq. (2) is based on an im-
practical assumption that the correspondence field Ĉt can
be reliably estimated for all foreground regions, which is
extremely difficult considering ubiquitous occlusions. We
further propose to incorporate a consistency-check mecha-
nism to downweight the unreliable values in Ĉt during pose
optimization. To model the reliability of estimated corre-
spondence, one option is to adopt a forward-and-backward
consistency check [26, 29]. However, the bidirectional con-
sistency check doubles the computational cost, and the do-
main gap between the rendered images and the real images
increases the learning difficulty.

We therefore propose a descriptor-based consistency
check to alleviate the dilemma. The basic idea is to repre-
sent the 3D object modelM and the observed 2D target im-
age Iobs as two sets of distinctive descriptors point-wisely
via a 3D-2D hybrid network (with KPConvs [46] and a key-
point description net [8] as backbones). The corresponding
descriptors of the object model and object images are en-
forced to be similar, while the non-corresponding descrip-
tors are enforced to be dissimilar (by training with a con-
trastive descriptor loss function being described in Sec. 3.3).
The learned 3D model descriptors are rendered as 2D fea-
ture maps, denoted as DM, according to the object pose of
the reference image for fast indexing. The encoded target
image descriptor map is denoted as DI .

With these high-dimensional distinctive descriptors, for
each estimated correspondence pair (xi, Ĉt(x

i)), we mea-
sure its reliability according to the similarity between their
associated 3D and 2D descriptors (di

M, di
I ). di

M and di
I

here are collected from the above descriptor maps: di
M =

DM(xi) and di
I = DI(Ĉt(x

i)), where bilinear interpola-
tion may be applied for non-inetger correspondence coordi-
nates. The reliability of this correspondence pair is modeled



with a similarity score:

wi = exp

(
−|1− diT

Mdi
I |

σ

)
, (3)

where σ is a learnable parameter (initialized with 1) ad-
justing the sharpness. The similarity scores are used as
the weights of the Mahalanobis distance measurements in
Eq. (2), which effectively downweight unreliable corre-
spondences during optimization. By introducing a diagonal
weighting matrix wi =

(
wi 0
0 wi

)
, the weighted version of

Eq. (2) is written as

E(ξ) =

M∑
i=1

(Ĉt(x
i)−C(xi; ξ))Twi(Ĉt(x

i)−C(xi; ξ)).

(4)
The pose optimization is thus formulated as

ξ̂ = argmin
ξ

E(ξ), (5)

where the pose parameter ξ ∈ se(3) is optimized by mini-
mizing the objective function defined by Eq. (4).
Differentiable Residual Pose Optimization. We solve the
non-linear least squares problem (Eq. (5)) with Levenberg-
Marquardt (LM) algorithm. For the optimization in the t-
th recurrent iteration, the pose parameter is initialized with
the estimated pose from the previous iteration i.e., ξ0 =

log(δP̂t−1). Continuing from the parameter ξp−1 of the
previous LM iteration, the left-multiplied increment△ξp is
computed by

△ξp = (JTWJ+ λI)−1JTWr(ξp−1), (6)

with which we update the parameter as ξp ← △ξp ◦ ξp−1,
to approach the optimal solution. Here, J = − ∂r

∂ξ is the Ja-
cobian matrix containing the derivative of the stacked resid-
ual vector r = (r1, r2, ..., r2M )T (established from Eq. (4))
with regard to a left-multiplied increment. We unroll the
parameter update procedure and make the LM optimization
layer differentiable to enable end-to-end network training.
The differentiable optimization procedure enhances the fea-
ture learning for correspondence field estimation, which is
essential to high performance. After LM optimization, the
residual pose of the t-th recurrent iteration is estimated as
δP̂t = exp(ξ̂), where ξ̂ denotes the optimized parameter
after several updates with Eq. (6).
Correspondence Field Rectification. The erroneous initial
poses usually produce large offsets between the rendered
reference object and the observed object, which poses chal-
lenges for correspondence estimation. Moreover, unlike the
standard scenarios of optical flow estimation [18,19,39,44],
unpatterned objects and varying illuminations are ubiqui-
tous in our task, which further increases the difficulty. Con-
sidering the optimized pose by Eq. (5) is mainly supported
by the reliable correspondence estimations with our weight-

ing mechanism Eq. (3), we rectify the correspondence field
as Ĉ′

t(x) = π(δP̂tπ
−1(x; z)) based on the currently op-

timized pose δP̂t. The rectification enforces the rigid-
transformation constraints among the correspondence field,
which improves the overall correspondence quality for the
correlation volume lookup in the following recurrent iter-
ation. A toy example is shown in Fig. 3 for better under-
standing.
Object Pose Estimation Update. After every N recur-
rent iterations, the residual pose is estimated as δP̂N by
the RNN. We update the object pose estimation with the
estimated residual pose δP̂N as P̂ ← δP̂NPinit, and we
re-render the reference image Iref based on this updated
pose to start the next N-recurrent-iteration refinement, as
illustrated in Fig. 2. We refer to the N-recurrent-iteration
refinement as a rendering cycle, and the initial pose Pinit

for the next cycle is set to P̂ accordingly. The performance
and efficiency with different rendering cycles and recurrent
iterations will be discussed in Sec. 4.2.

3.3. Loss Functions
Model Alignment Loss. To supervise the residual pose
estimations {δP̂t|t = 1 . . . N} generated in each render-
ing cycle (including N recurrent iterations), we apply these
residual poses as the left-multiplied increments to the initial
pose Pinit, having the corresponding object pose estima-
tions {P̂t|t = 1 . . . N}, where P̂t = δP̂tPinit. Thereafter,
we adopt a 3D model alignment loss to supervise these pose
estimations for each rendering cycle:

Lma =

N∑
t=1

||P̂tXmodel −PgtXmodel||1, (7)

where P̂t is the object pose estimation mentioned above and
Pgt denotes the ground-truth pose. Here, Xmodel ∈ R4×M

contains homogeneous coordinates of the M model points.
This loss function encourages the pose estimation to be
close to the ground-truth so that the transformed model
points can be well aligned.
Correspondence Loss. We adopt L1 loss [44] for corre-
spondence field supervision, where the ground-truth corre-
spondence fields are derived with Eq. (1) based on ground-
truth poses.
Descriptor Loss. We use circle loss Lcir [40] as the con-
trastive loss to supervise the point-wise descriptor learn-
ing of the 3D object model and the target images for sim-
ilarity score calculation Eq. (3). Concretely, we view the
target image Iobs as two parts, i.e., the foreground re-
gion (object region) denoted as fg(Iobs) and the back-
ground region denoted as bg(Iobs). For each foreground
descriptor di

I ∈ fg(Iobs), we first find a set of its corre-
sponding 3D descriptors {dj

M}+ of object model via KNN
searching (see supplementary materials for details). Then,
di
I ∈ fg(Iobs) is enforced to be similar to {dj

M}+ and
dissimilar to the remaining non-corresponding descriptors
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Figure 4. Visualization of our pose estimations (first row) on Occlusion LINEMOD dataset and the similarity score maps (second row)
for downweighting unreliable correspondences during pose optimization. For pose visualization, the white boxes represent the erroneous
initial poses, the red boxes are estimated by our algorithm and the ground-truth boxes are in blue. Here, the initial poses for pose refinement
are originally from PVNet [34] but added with significant disturbances for robustness testing.

{dk
M}− with circle loss Lcir [40], which is expressed as

Lcir(d
i
I , {d

j
M}+, {dk

M}−). Moreover, for background de-
scriptors di

I ∈ bg(Iobs) , we constrain them to be simi-
lar to each other in the background, while to be dissim-
ilar to the foreground descriptor set fg(Iobs) with loss
Lcir(d

i
I , bg(Iobs), fg(Iobs)). Traversing all target image

descriptors di
I , the descriptor loss is calculated as

Ld =
∑

di
I∈fg(Iobs)

Lcir(d
i
I , {dj

M}+, {dk
M}−)

+
∑

di
I∈bg(Iobs)

Lcir(d
i
I , bg(Iobs), fg(Iobs))

(8)

to supervise the descriptor learning. With the contrastive
learning, the corresponding 2D-3D descriptors would be
similar while the noncorresponding ones would be dissimi-
lar, which provides the foundation for unreliable correspon-
dence handling with similarity scores Eq. (3).

4. Experiments
4.1. Experimental Setup

Implementation Details. We train all of our networks end-
to-end using the Adam [22] optimizer with an initial learn-
ing rate of 10−4 and adjust it with a cosine annealing strat-
egy. The weights of model alignment loss Lma and de-
scriptor loss Ld are set to 1, while the correspondence loss
weight is set to 0.5. During training, we conduct 3 ren-
dering cycles, each of which performs 4 recurrent refine-
ment iterations for pose refinement. All our models are
trained agnostic to the initial pose sources where disturbed
ground-truth poses are taken as initial poses for training fol-
lowing [23]. For testing, we conduct the same numbers of
rendering cycles and refinement iterations as those during
training for most experiments if without further declaration,
though more iterations could produce better results. Please
refer to the supplementary materials for more details.
Datasets. We evaluate our method on three datasets, includ-
ing LINEMOD [14], Occlusion LINEMOD [3] and YCB-
Video [52]. LINEMOD is a standard benchmark for 6D

object pose estimation. This dataset contains texture-less
objects in cluttered scenes captured with challenging illu-
minance variations. The Occlusion LINEMOD is a subset
of LINEMOD dataset with additional annotations for oc-
cluded objects, which is suitable for testing the robustness
to severe occlusions. Besides, the YCB-Video dataset con-
tains the images of the YCB object set [4] where strong
occlusions, clutters are exhibited. It includes more than
110k real images captured for 21 objects with or without
textures. We follow similar conventions in data processing
and synthetic data generation as the previous works [20,34].
For the initial poses, we mainly rely on PoseCNN [52] and
PVNet [34], two typical direct estimation methods, follow-
ing [23] and [20]. We also create a set of extremely erro-
neous initial poses by adding random Gaussian noise to the
original initial pose estimations to evaluate the robustness
to large initial poses errors.
Evaluation Metrics. We evaluate our method with the
metrics ADD-(S) [14] and AUC of ADD(-S) [52]. For
the ADD-(S) metric, the mean distance between the model
points transformed with the pose estimation and the ground-
truth is calculated. With the standard ADD-(S) metric, if the
mean distance is less than 10% of the model diameter, the
pose estimation is regarded as correct. In some of our ex-
periments, we also test the performances when the threshold
is set to 2% or 5% of the model diameter for stricter test-
ing. For symmetric objects, the mean distance is computed
based on closest point distances [14]. When evaluating on
the YCB-Video dataset, we also compute the AUC (Area
Under Curve) of ADD(-S) by varying the distance threshold
from 0 cm to 10 cm with step size 0.1 cm following [34].

4.2. Ablation Study
We conduct a thorough ablation study on LINEMOD and

Occlusion LINEMOD datasets to evaluate the effectiveness
of the components in our framework.
Correspondence Field Supervision. We first remove the
correspondence loss to verify the influence of correspon-
dence field quality on the pose estimation. The results ‘w/o
correspondence loss’ in Table 1 correspond to this ablation
study, and the performance degrades significantly. Since



Table 1. (a) Ablation study on LINEMOD dataset. (b) Validation of effectiveness of similarity score on the Occlusion LINEMOD dataset
with the ADD(-S) metric. For more detailed comparison, the evaluations with different thresholds of ADD(-S) metric are conducted. The
thresholds are set to s 2%, 5% and 10% of the model diameter, denoted as 0.01d, 0.05d, 0.1d respectively.

(a)

w/o correspondence loss w/o Lma w/o Ĉ′
t rect. w/o 3D context Fctx w/ 2D context Full(Ours)

Object 0.02d 0.05d 0.1d 0.02d 0.05d 0.1d 0.02d 0.05d 0.1d 0.02d 0.05d 0.1d 0.02d 0.05d 0.1d 0.02d 0.05d 0.1d
Ape 1.29 17.60 61.23 8.65 36.03 70.35 4.40 35.76 74.51 14.86 50.48 80.10 12.19 52.22 82.33 18.76 57.14 88.19

Benchvise 31.60 87.08 99.32 58.14 94.30 99.71 79.56 98.72 100.0 72.26 99.13 100.0 75.26 98.37 99.81 75.17 98.25 100.0
Camera 19.37 70.89 94.90 45.13 82.31 95.95 56.72 90.09 97.91 53.63 90.69 98.73 56.90 91.68 97.78 55.39 89.12 98.04

Can 8.95 77.88 96.83 32.65 86.71 98.76 47.13 94.37 99.31 53.25 95.28 99.80 53.21 95.62 99.72 54.53 94.69 99.31
Cat 4.59 28.39 71.64 25.24 62.60 92.81 31.74 75.76 97.98 32.34 74.55 96.71 36.81 79.15 98.55 36.43 74.85 96.41

Driller 40.25 84.04 92.57 49.88 88.50 98.22 59.81 96.43 99.70 60.46 95.34 99.70 60.69 95.54 99.41 62.44 95.44 99.70
Duck 5.62 22.44 69.08 16.66 47.46 79.69 19.18 55.68 87.01 16.71 57.37 85.92 25.19 63.62 88.01 25.82 61.13 89.30

Eggbox 43.45 89.81 99.65 46.40 87.12 98.12 52.64 83.45 97.65 50.05 81.03 95.59 54.51 86.38 96.36 59.06 93.80 99.53
Glue 44.08 93.57 69.83 10.67 52.84 92.29 51.83 93.95 99.87 55.12 94.40 99.52 54.14 95.71 99.87 60.14 95.56 99.71

Holep. 6.26 15.89 51.95 31.55 65.55 95.04 32.81 70.22 96.53 24.26 66.51 93.91 20.61 56.03 91.04 35.68 75.26 97.43
Iron 42.33 96.09 99.08 52.14 95.48 99.69 62.46 97.32 99.59 63.74 97.45 100.00 63.07 98.24 100.0 68.03 98.16 100.0

Lamp 33.87 88.57 98.98 30.18 81.90 99.17 45.95 94.75 99.81 46.35 93.76 99.81 60.71 94.43 99.00 61.32 94.91 99.81
Phone 2.33 18.53 55.59 31.08 72.81 95.36 36.55 82.74 98.13 39.66 82.06 97.26 42.68 83.85 98.39 42.30 83.95 98.39

Average 21.85 60.83 85.27 33.72 73.35 93.47 44.68 82.25 96.00 44.82 82.93 95.93 47.44 83.91 96.17 50.39 85.56 97.37

(b)
w/o similarity score w/ similarity score (Ours)

Object 0.02d 0.05d 0.1d 0.02d 0.05d 0.1d
Ape 0.17 8.97 38.63 0.09 9.74 37.18
Can 7.29 53.69 85.50 7.79 56.01 88.07
Cat 1.60 11.71 27.97 1.60 11.63 29.15

Driller 13.76 52.47 78.42 14.58 59.80 88.14
Duck 0.18 11.31 47.77 0.26 11.13 49.17

Eggbox 2.98 25.96 61.28 4.94 38.47 66.98
Glue 6.98 35.22 65.01 10.52 40.97 63.79

Holep. 0.08 18.33 59.83 0.42 21.42 62.76
Average 4.13 27.21 58.05 5.02 31.15 60.65

(a) (b) Module
Runtime

(ms)
Ref. Image Rendering 8.88
3D Context Encoding

(run once per sequence) 35.20

3D Feat. Rendering
(context&descriptor) 5.39

Image Feat. Encoding 6.39
2D-3D Hybrid Net

(2D part) 2.99

CF Estimation 6.21
Pose Optim. 6.23

CF Rectification 1.48

Figure 5 & Table 2. Left: ADD(-S) accuracies w.r.t. different re-
current iterations and rendering cycles on LINEMOD. (a) Results
based on the initial poses from PoseCNN [52] (b) Results based on
the disturbed PoseCNN poses (with Gaussian noise σt = 15cm,
σr = 10◦). Right: runtime analysis of individual modules.

our pose optimization is directly based on the correspon-
dence field estimation, solid supervision on correspondence
field estimation is essential to the overall system.
Effectiveness of the Pose Supervision and End-to-end
Learning. We further remove the supervision to the pose
estimation by setting the weight of the model alignment
loss Lma to 0. This is equivalent to adopting a typical non-
differentiable LM optimizer because no gradient is back-
propagated through the LM layer during training. It can
be found that the object pose can still be reasonably esti-
mated (denoted as ‘w/o Lma’ in Table 1), but with hum-
ble performance, especially with stricter evaluation criteria,
i.e., by setting a smaller threshold 0.01d or 0.05d. The per-
formance degradation reflects the importance of end-to-end
pose learning. The differentiable LM layer enables the pose
supervision to affect the feature learning for more robust
correspondence field estimation, which is essential to our
formulation.
Correspondence Field Rectification. Another key pro-
cedure in our recurrent pose refinement is the correspon-
dence field rectification. To validate the effectiveness, we
ablate this step and directly use the correspondence esti-
mation Ĉt from the GRU as the initialization for the next
iteration (denoted as ‘w/o Ĉ′

t rect.’ in Table 1). We find
that the performance drops significantly compared with our
full framework, especially on more strict metrics, i.e., 0.01d
and 0.05d. This phenomenon demonstrates that the cor-
rected correspondence field with the rigid-transformation
constraints from the optimized pose can facilitate the re-

Ours

RePOSE

Ours

RePOSE

Figure 6. Robustness comparison with RePOSE by degrad-
ing the initial poses (from PVNet [34]) with Gaussian noise on
LINEMOD dataset.

finement in the following iterations.
3D Context Encoder. To verify the effectiveness of our
3D context encoder, we test the system without the context
encoder (denoted as ‘w/o 3D context Fctx’) or with a com-
monly used 2D context encoder (denoted as ‘w/ 2D con-
text’). The performances of these two versions both degrade
compared to that with a 3D context encoder. The degrada-
tion not only reveals the importance of context information
as indicated by previous works [39,44], but also proves that
our 3D context encoder is a more effective choice than the
2D counterpart in our task. We reckon that the more ro-
bust performance may be attributed to the finer granularity
of dense 3D point cloud features (compared with the low-
resolution 2D image features). The finer-granularity fea-
tures could provide more detailed geometric contexts.
Similarity Scores for Occlusion Handling. In Table 1(b),
we evaluate the effectiveness of similar scores in occlusion
handling on the Occlusion LINEMOD dataset. The ver-
sion ‘w/ similarity score’ performs better for severely oc-
cluded objects. By including similarity scores during pose
optimization, flawed correspondence estimations in the oc-
cluded unreliable regions are effectively downweighted.
Some similarity score map examples are exhibited in Fig. 4
for better understanding.
Recurrent Iterations vs Rendering Cycles. The num-
ber of refinement iterations affects the system performance,
especially when erroneous initial pose estimations exist.
We analyze the performances with different recurrent itera-
tions and rendering cycles in Fig. 5. From Fig. 5(a), it can
be found that, by solely increasing the recurrent iterations
while rendering the reference object image only once, we
have achieved a high accuracy of 96.05% which is com-



Table 3. The comparison of estimation accuracy with competitive
direct methods (PoseCNN [52], PVNet [34] and HybridPose [38])
and refinement methods (DPOD [59], DeepIM [23] and RePOSE
[20]) on LINEMOD dataset in terms of the ADD(-S) metric.

Method PoseCNN PVNet HybridPose DeepIM [23] DPOD [59] RePOSE [20] Ours
Init. pose - - - PoseCNN self-designed PoseCNN PVNet PoseCNN PVNet

Ape 25.62 43.62 63.1 76.95 87.73 47.4 79.5 88.19 85.62
Benchvise 77.11 99.90 99.9 97.48 98.45 88.5 100.0 100.0 100.0

Camera 47.25 86.86 90.4 93.53 96.07 67.0 99.2 98.04 98.43
Can 69.98 95.47 98.5 96.46 99.71 88.0 99.8 99.31 99.51
Cat 56.09 79.34 89.4 82.14 94.71 80.6 97.9 96.41 96.41

Driller 64.92 96.43 98.5 94.95 98.80 78.5 99.0 99.70 99.50
Duck 41.78 52.58 65.0 77.65 86.29 66.1 80.3 89.30 89.67

Eggbox 98.50 99.15 100.0 97.09 99.91 98.6 100.0 99.53 100.0
Glue 94.98 95.66 98.8 99.42 96.82 95.6 98.3 99.71 97.30

Holep. 52.24 81.92 89.7 52.81 86.87 62.7 96.9 97.43 97.15
Iron 70.17 98.88 100.0 98.26 100.0 80.3 100.0 100.0 100.0

Lamp 70.73 99.33 99.5 97.50 96.84 87.8 99.8 99.81 100.0
Phone 53.07 92.41 94.9 87.72 94.69 74.3 98.9 98.39 98.68

Average 63.26 86.27 91.3 88.61 95.15 78.1 96.1 97.37 97.10

Table 4. Accuracy comparison with the state of the art on OC-
CLUSION LINEMOD dataset in terms of the ADD(-S) metric.

Object PoseCNN [52] PVNet [34] HybridPose [38] GDR-Net [51] DPOD [59] RePOSE [20] Ours
Ape 9.60 15.8 20.9 39.3 - 31.1 37.18
Can 45.2 63.3 75.3 79.2 - 80.0 88.07
Cat 0.93 16.7 24.9 23.5 - 25.6 29.15

Driller 41.4 65.7 70.2 71.3 - 73.1 88.14
Duck 19.6 25.2 27.9 44.4 - 43.0 49.17

Eggbox 22.0 50.2 52.4 58.2 - 51.7 66.98
Glue 38.5 49.6 53.8 49.3 - 54.3 63.79

Holep. 22.1 39.7 54.2 58.7 - 53.6 62.76
Average 24.9 40.8 47.5 53.0 47.3 51.6 60.65

parable to RePOSE [20]. If conducting refinement with
more recurrent iterations and rendering cycles, steady im-
provements are reported, which reflect good convergence
of our method. To further validate the robustness to er-
roneous initial poses, we add Gaussian noise to the initial
poses. Specifically, we randomly disturb translation com-
ponents and rotation Euler angles with Gaussian noise. For
the rotation, we add angular noise with standard deviation
(STD, denoted as σr) of 10◦ in all three axes. For the trans-
lational disturbance, we apply noise with a STD of 15 cm
along the z axis (the axis perpendicular to the image plane)
and STDs of 3 cm in x and y directions ( 15×) consider-
ing current methods usually have larger variances on depth
estimations. From Fig. 5(b), we find that the necessity of
recurrent refinement becomes more noticeable.

Though more rendering cycles bring performance gains
as well, the extra costs are significant, since most of the in-
put features need re-encoding. Based on the runtime anal-
ysis (Table 2), increasing the recurrent iterations is more
economical for better performance as only the CF (corre-
spondence field) estimation, pose optimization and CF rec-
tification modules are activated for a recurrent iteration.

4.3. Comparison with State-of-the-Art Methods
We compare with the cutting-edge methods on

LINEMOD, Occlusion LINEMOD, and YCB-Video.
For the LINEMOD dataset, we compare with the re-

cent pose refinement methods RePOSE [20], DPOD [59]
and DeepIM [23] as well as some direct estimation base-
lines [34, 38, 52]. Table 3 contains the comparison results
and we achieve a state-of-the-art performance. Interest-
ingly, we achieve slightly better average performance when
using PoseCNN [52] as the initial pose generator rather than

Table 5. Comparison with the refinement methods based on single
images on the YCB-Video dataset. The performance of our initial
pose generator, i.e., PoseCNN, is also included.

Metric PoseCNN [52] DeepIM [23] DPOD [59] RePOSE [20] Ours
AUC, ADD(-S) 61.3 81.9 76.3 80.8 83.1

ADD(-S) 21.3 53.6 50.4 60.3 66.4

the PVNet [34], although the pose accuracy of PVNet is
much better as exhibited in Table 3. This phenomenon re-
veals the good tolerance of our system to erroneous initial
poses. To test our robustness to even larger initial pose er-
rors, we add random Gaussian pose noises to the initial ro-
tation and translation components separately for accuracy
evaluation similar to those in Sec. 4.2. Fig. 6 plots the ac-
curacy variations w.r.t. the disturbance magnitudes. Our
method exhibits strong robustness and works reasonably
even with extremely noisy initial poses.

We also conduct comparisons on Occlusion LINEMOD.
As shown in Table 4, we outperform the cutting-edge
method [20] by a significant margin (51.6↗ 60.65), which
manifests the system robustness to occlusions. We visualize
some of our pose estimates from severely occluded images
in the first row of Fig. 4, where the initial poses from PVNet
are disturbed with Gaussian noise like before (σt = 15 cm,
σr = 10◦) to pose more challenges. It is shown that our
system is capable of handling large initial pose errors even
in highly occluded scenarios.

Our additional evaluation on the YCB-Video dataset uses
PoseCNN as the pose initializer, following the settings of
RePOSE [20]. We compare with the refinement methods
based on monocular color images. Our system still per-
forms well on this large-scale complex dataset. We consis-
tently improve the initial poses provided by PoseCNN [53],
and outperform the cutting-edge pose refinement method
RePOSE in both metrics, as shown in Table 5.

5. Conclusions and Limitations
We have presented a recurrent framework for 6-DOF ob-

ject pose refinement. A non-linear least squares problem
is formulated for pose optimization based on the estimated
correspondence field between the rendered image and ob-
served image. Descriptor-based consistency checking is in-
cluded to downweight unreliable correspondences for oc-
clusion handling. Our method performs robustly against er-
roneous pose initializations and severe occlusions, which
achieves state-of-the-art performances on public datasets.

One limitation of our method is that the trained model is
object-specific similar to many other works [20,23,59]. Al-
though for a novel object, only the pose refinement module
needs further finetuning, the limited generalization ability
to unknown objects is still undeniable. More detailed dis-
cussions are in the supplementary material. In the future,
we plan to extend our method to handle unknown objects
for better generality.
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